® •ZmTech Universal qPCR Mixtures (Cat. K209090)

Kit contains: Stored at -20°C

• 2x Ready-to-use universal qPCR mixture, including optimization of 2x PCR Buffer, Heat-Activated Taq DNA Polymerase, dNTPs(dATP, dCTP, dGTP, dTTP), 6mM MgCl₂, PCR Buffer Stabilizer, RNase/DNase I Inhibitors and Internal Reference.

Reagents required but not provided:

PCR grade water and Reverse Transcriptase (RT).

Description:

- ZmTech universal qPCR mixture (K209090) is a 2x reaction mixture suitable for most real-time PCR assays, designed for qPCR assays where template is limited or very low-copy-number targets. It has been developed to minimize primer-dimers, which are of particular concern when using fluorescent probe for detection.
- ZmTech universal qPCR mixture contains low levels of internal reference, ideal for those block-based platforms
 which are more sensitive to dye levels. This internal reference dye is necessary for ABI Sequence detection systems,
 and no interfere with LightCyler I/II systems.
- Suggestions for use: The Taq DNA polymerase is inactive at room temperature and a 5-minute hot start at 95°C is essential to active the enzyme. Hot start procedure can significantly improve the results of DNA amplifications by reducing the generation of nonspecific amplification products and primer-dimer artifacts.

Reaction conditions/suggestions for use:

- RNA preparation: Integrity and Purity of RNA template is essential. Impurities (proteins, phenol, chloroform) may interfere the RT-PCR Reactions and detection systems.
- MgCl₂ Optimization: MgCl₂ is a co-factor for the Taq DNA Polymerase. A final MgCl₂ concentration of 3mM should be ideal for most applications. However, the MgCl₂ requirements for the polymerase often vary, depending on the particular template and primers used. MgCl₂ can be optimized within 3mM-7mM range.
- <u>Primer Concentration:</u> A final primer concentration of 200nM is sufficient for most reactions. However, primer concentration can be optimized within 25-900nM range.
- <u>cDNA Template Concentration:</u> 50ng of human cDNA in a 25ul reaction is ideal for real-time PCR reactions.

 However, this may vary, depending on the particular gene of interest. Too high template concentration will inhibit PCR reactions.
- <u>Probe Concentration:</u> In most case, using a combination of primers and probe at a molar ratio of 3:1 is sufficient. However, probe concentration can be optimized within the 10-250nM range.

Procedure: (suggested protocol)

1. Preparation of PCR Master Mix for a single reaction (total volume: 25uL) in a PCR microtube or plate

Component	Volume (µL)	Final Concentration	
All-IN-One qPCR Mixture(2x)	12.5	1x	
MgCl ₂	X	(3mM-7mM)	
DNA Template	2	(100pg-500pg/μL)	
Forward primer (5µM)	1	200nM	
Reverse primer (5µM)	1	200nM	
Probe	1	70nM	
PCR grade water	up to 25 μL		

2. Setup typical thermal cycling parameters

Enzyme activation Step:	95°C	5 minut	tes
25-40 Cycles:			
Denaturation	95°C	15 secon	ds
Annealing	X°C	30 seconds dependent on Tm of primers	
Extension	60°C	30 seconds (acquire data at the end of this step)	
Step:	Temperature:	Time:	Temperature Transition Rate
1. Denaturation (1 cycle)	94°C	5 minutes	20°C/second
2. Cycles (35 cycles):			
Denature	94°C	15 seconds (none)	20°C/second
Annealing	X°C	15 seconds (none)	20°C/second
Extension	72°C	8 seconds (none)	20°C/second
Detection	72° ℃	0 seconds (single)	20°C/second
3. Melting(1 cycle)	X°C	1 minute (none)	20°C/second
		(95°C, 0 Second,	0.15°C/second, con.)
4. Cooling (1cycle)	40°C	30 seconds (none)	20°C/second

Precautions and Disclaimer:

[•] This product and procedure described are intended for R&D use only. Purchase of this product does not convey a license to perform any patented process.